Overview
The Development of the Geared Turbofan™ Engine

• Some historical perspective
• A recurrent theme - conventional wisdom vs. reality
• The roles of architecture, design, and technology
• Speculation on the future
Why History?

“There is nothing new in the world except the history you do not know.”

Harry S. Truman
Pratt & Whitney – Dependable Engines

Wasp Engine
1925

Turbofan Engine
2015

Eras of Engine Architecture

OVERALL EFFICIENCY

1940 1960 1980 2000 2020

>10% STEPS IN EFFICIENCY

Single Spool
(1937)

Dual-Spool Turbojet
(1951)

High Bypass Turboprop
(1969)

Ultra-High Bypass Geared Turbofan
(2015)
Geared Turbofan Technology Demonstrators
Over 50 years of interest

Pratt & Whitney PW304, 1957

1960
1970
1980
1990

Hamilton Standard Q-Fan, 1972

General Electric QCSEE, 1977

Lycoming ALF502 1980

Turbomeca Astafan Variable Pitch Fan, 1969

Garrett TFE731 1970

Rolls Royce Dowty M455D-02, 1975

Pratt & Whitney ADP X-Engine, 1992

P&W Hydrogen Fueled Aircraft Engine
Project Suntan – Liquid H₂ engine circa 1957-58
Geared Turbofan Technology Demonstrators

Variable pitch fans

- Turbomeca Astafan Variable Pitch Fan, 1969
- Rolls Royce Dowty M45SD-02, 1975
- Pratt & Whitney ADP X-Engine, 1992

Turbofan Conversion Geared Engines

Turboprops/shaft transformed into high FPR turbofans

- Garrett TFE731 1970
- Lycoming ALF502 1980

FPR = fan pressure ratio

Image Credits
1 Johan Visschedijk Collection
3 Simon JP O'Riordan
4 NASA
$1B Technology Investment
25 years of research prior to product launch

Challenging Conventional Wisdom
Conventional wisdom - areas of general consensus

- Gears – too heavy, too much heat to reject, short-lived
GTF™ Engine
Architecture for the 21st Century

Conventional Engine

Higher Efficiency, Lower Noise

Turning Vision

Conventional Engine

Higher Efficiency, Lower Noise
Conventional Engine
Higher Efficiency, Lower Noise

Fan Drive Gear System
25 years of technology development

- Efficient: >99.5%
- Simple: 13 major parts
- Reliable: 20 years before maintenance
Three Interlocking Enabling Technologies
Enable step change in propulsor performance

- Very Light Weight Reliable Gear
- Light Weight Extra Efficient Fan
- Advanced Nacelle

2 + 2 + 2 = 16% Improvement in Fuel Burn

Challenging Conventional Wisdom
Conventional wisdom - areas of general consensus

- Gears – too heavy, too much heat to reject, short lived
- Low FPR Fans – need variable pitch or variable nozzle
Low Fan Pressure Ratio Needs a Variable Area Nozzle

A widely accepted view

“Fan pressure ratios at cruise significantly lower than, say, 1.45 will probably have to wait until variable nozzles for the bypass stream become available or acceptable, a point that has been recognized in the industry for some time.

In other words, the variable area nozzle is an enabling technology for lower fan pressure ratio.” *

Challenging Conventional Wisdom

Conventional wisdom - areas of general consensus

- Gears – too heavy, too much heat to reject, short lived
- Low FPR Fans – need variable pitch or variable nozzle
- Nacelles – too large in diameter, too much drag
Low Noise Fans Enable Short Inlets
Less noise produced ➔ less acoustic treatment needed

Legacy
Inlet L/D ~ 1

GTF
Inlet L/D ~ 0.5-0.6

Engine Diameter Grows as Length Shrinks
35,000 lbs thrust (today) versus 47,000 lbs (1976)
A Challenge to Retrofit a Much Larger Engine

Challenging Conventional Wisdom

Conventional wisdom - areas of general consensus

• Gears – too heavy, too much heat to reject, short lived
• Low FPR Fans – need variable pitch or variable nozzle
• Nacelles – too large in diameter, too much drag
• **Composite blades are a superior, lighter solution**
Hybrid Metallic Fan Blade
Disciplined approach surprised conventional wisdom

Advanced Fan Blade
Very high efficiency, very low noise

Superior Aerodynamics
1% Better Fuel Burn
Challenging Conventional Wisdom

Conventional wisdom - areas of general consensus

- Gears – too heavy, too much heat to reject, short lived
- Low FPR Fans – need variable pitch or variable nozzle
- Nacelles – too large in diameter, too much drag
- Composite blades are a superior solution
- **Low emissions requires lean burn combustors**

TALON™ X Rich Burn Quick Quench Combustor

Best in class emissions and performance

- Blow out free 3rd Generation RQL aero
- World-class emissions and smoke levels
- Highly durable float wall construction
- 3rd Gen combustor alloys for oxidation
- Compact, lightweight configuration
- No complicated fuel nozzles or staging
- Optimized exit profile temperatures

>40% Margin to CAEP/8
Challenging Conventional Wisdom

Conventional wisdom - areas of general consensus

- Gears – too heavy, too much heat to reject, short lived
- Low FPR Fans – need variable pitch or variable nozzle
- Nacelles – too large in diameter, too much drag
- Modern fans must use composite blades
- Low emissions requires lean burn combustors
- **Higher pressure ratio core compressors are superior**

Architecture and Spool Pressure Ratio

Engine architecture sets optimum low-high split
Same Overall Pressure Ratio (OPR)
Geared vs. direct drive different split among spools

45% fewer airfoils – 6 fewer stages

High Speed Low Pressure Turbine
Higher speed improves efficiency and drops weights

Gear Enables High Speed LPT

- Higher Efficiency
- Lower Stage Count
- >1700 fewer Airfoils
- Lower Weight
- Smaller Diameter and Length
- Better installation, lower airframe weight
- Lower Maintenance Cost

LPT efficiency trades 1:1 for fuel efficiency (fuel burn)
Cores Shrink as Efficiency Improves

For similar missions

JT8D
- 1964/1980: 14,000/21,700 lbf

V2524
- 1995: 24,800 lbf

PW1524G
- 2016: 24,000 lbf
PurePower® Geared Turbofan™ Engine
New technologies realized

Challenging Conventional Wisdom
Conventional wisdom - areas of general consensus

- Gears – too heavy, too much heat to reject, short lived
- Low FPR Fans – need variable pitch or variable nozzle
- Nacelles – too large in diameter, too much drag
- Modern fans must use composite blades
- Low emissions requires lean burn combustors
- Higher pressure ratio core compressors are superior
- Larger diameter, low FPR geared engines may have lower TSFC but will have higher fuel burn due to weight & drag penalties
Conventional Propulsion System Fundamentals
Trading fuel burn against noise

![Diagram showing the trade-off between fuel burn and noise for different bypass ratios and fan diameters.]

Dramatic Reduction in Community Noise
73% reduction in noise footprint – Paris CDG

![Comparison of noise footprints for existing turbofan and PurePower PW1000G Engine.]

Source: Wyle Labs
Existing turbofan: 75 dB contour = 106.4 sq km
PW1000G engine: 75 dB contour = 28.7 sq km
Evolution of Turbofan Engine Noise

Jet noise no longer predominates

1960's engine
1:1 BPR

1990's engine
6~8:1 BPR

2015 engine
12:1 BPR

Engine Models

<table>
<thead>
<tr>
<th>Engine Model</th>
<th>PW1100G-JM</th>
<th>PW1200G</th>
<th>PW1400G</th>
<th>PW1500G</th>
<th>PW1700G / PW1900G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airbus A320neo</td>
<td>A319neo PW1124G-JM</td>
<td>MRJ90 PW1215G</td>
<td>MC-21-200 PW1428G</td>
<td>CS100 PW1519G</td>
<td>E175-E2 PW1700G</td>
</tr>
<tr>
<td></td>
<td>24,000 lbs</td>
<td>15,000 lbs</td>
<td>28,000 lbs</td>
<td>19,000 lbs</td>
<td>up to 17,000 lbs</td>
</tr>
<tr>
<td>PW1127G-JM</td>
<td>27,000 lbs</td>
<td>PW1217G</td>
<td>PW1431G</td>
<td>PW1521G</td>
<td>E190/195-E2 PW1900G</td>
</tr>
<tr>
<td></td>
<td>A320neo PW1133G-JM</td>
<td></td>
<td></td>
<td></td>
<td>up to 22,000 lbs</td>
</tr>
<tr>
<td></td>
<td>33,000 lbs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7,000 Orders & Commitments

- Embraer E-Jets E2
- Mitsubishi Regional Jet
- Irkut MC-21
- Rosteknologii
- SaudiGulf
- Airbus A320neo

Successfully Completing Milestones

- Bombardier C Series
 - FETT
 - First Flight
 - EIS
- Mitsubishi Regional Jet
 - FETT
 - First Flight
 - EIS
- Airbus A320neo
 - FETT
 - First Flight
 - EIS
- Irkut MC-21
 - FETT
 - First Flight
 - EIS
- Embraer E-Jets E2
 - FETT
 - First Flight
 - EIS
The Future
Semi-informed speculation

• What will be future engine requirements?
• What will the engines of the future look like?
• What technologies are needed?

Evolution of Jet Engine Efficiency
Change in Bypass Ratio, Efficiency

<table>
<thead>
<tr>
<th>In Service</th>
<th>2013-16</th>
<th>Longer Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPR 5</td>
<td>BPR ~12</td>
<td>BPR 15~18</td>
</tr>
<tr>
<td>Fuel Burn Reference</td>
<td>-15%</td>
<td>-20~30%</td>
</tr>
</tbody>
</table>

Fan Pressure Ratios Must Drop

So inlets must shorten

Image credit: NASA
One Advanced Concept, the LRU Core
Solving design challenges, reducing maintenance

Airplanes of the Future?
Future airplane is unclear, future motor is not

Source: ATAG
1:11 Scale D8 Aircraft

Innovation in Energy – Solar Powered Airplanes
Sustainable Drop-In Biofuels for Reduced CO₂

Conventional Fuel

Bio Fuel
Summary
The future of commercial aviation

• Gas turbines are the future of commercial aviation
 – Most efficient engines on the planet
 – Most reliable
 – Lowest emissions
 – Lowest cost of ownership

• Geared, Ultra-high bypass ratio will dominate

• Conventional wisdom vs. technical reality
 – Conventional wisdom based on “all else being equal”
 – History suggests that it rarely is