

Overview

The Development of the Geared Turbofan[™] Engine

- Some historical perspective
- A recurrent theme conventional wisdom vs. reality
- The roles of architecture, design, and technology
- Speculation on the future

PurePower[®] Geared Turbofan[™] Engine

Why History?

"There is nothing new in the world except the history you do not know."

Harry S. Truman

Pratt & Whitney – Dependable Engines

Image Credits ¹ Johan Visschedijk Collection ² Schaefer, et al, NASA, 1977 ³ Simon JP O'Riordan ⁴ NASA

Pratt & Whitney

Turbofan Conversion Geared Engines Turboprops/shaft transformed into high FPR turbofans

© 2015 United Technologies Corporation This document has been publicly released

Fan Drive Gear System 25 years of technology development

Efficient: >99.5%

Simple: 13 major parts

Reliable: 20 years before maintenance

Three Interlocking Enabling Technologies Enable step change in propulsor performance

- Gears too heavy, too much heat to reject, short lived
- Low FPR Fans need variable pitch or variable nozzle

- Gears too heavy, too much heat to reject, short lived
- Low FPR Fans need variable pitch or variable nozzle
- Nacelles too large in diameter, too much drag

- Gears too heavy, too much heat to reject, short lived
- Low FPR Fans need variable pitch or variable nozzle
- Nacelles too large in diameter, too much drag
- Composite blades are a superior, lighter solution

TALON[™] X Rich Burn Quick Quench Combustor

Best in class emissions and performance

Blow out free 3rd Generation RQL aero World-class emissions and smoke levels Highly durable float wall construction 3rd Gen combustor alloys for oxidation Compact, lightweight configuration No complicated fuel nozzles or staging Optimized exit profile temperatures

>40% Margin to CAEP/8

Pratt & Whitney

Pratt & Whitney

- Gears too heavy, too much heat to reject, short lived
- Low FPR Fans need variable pitch or variable nozzle
- Nacelles too large in diameter, too much drag
- Modern fans must use composite blades
- Low emissions requires lean burn combustors
- Higher pressure ratio core compressors are superior
- Larger diameter, low FPR geared engines may have lower TSFC but will have higher fuel burn due to weight & drag penalties

Dramatic Reduction in Community Noise 73% reduction in noise footprint – Paris CDG

Existing turbofan

PurePower® PW1000G Engine

Pratt & Whitney

Source: Wyle Labs Existing turbofan: 75 dB contour = 104.4 sq km PW1000G engine: 75 dB contour = 28.7 sq km

Airplanes of the Future?

Future airplane is unclear, future motor is not

Source: ATAG

1:11 Scale D8 Aircraft

Summary

