Dr. M.J. Benzakein Director, Propulsion and Power Center

The Aero Engine:

Where we have been and where we are going. A look into the future.

OUTLINE

- Introduction
- Commercial Airplane Markets for the next 20-30 years
- Customer Requirements and Propulsion needs
- What is coming NOW...2015-2030
- Going forward—NASA, Clean Sky
- What does it mean?
- The opportunities

Aviation ... 100 years of powered flight has dramatically changed our world

Wright Flyer 1 occupant 12 HP engine 4.7 pressure ratio 120 feet flight 12 second flight

Air travel has grown more than six-fold during the past 30 years

Demography source: UN/ESA World Population Prospects

Populations Now up to 2100: 10 billions Europe decreasing after 2020 North America still growing Asia decreasing after 2050 Africa towards1/3 of the world!

Huge potential exists for long-term growth in air travel

Sources : ICAO, Global Insight

* Passengers carried by airlines domiciled in the country

The Ohio State University

The Relative Weight of Different Zones is of Importance for the Traffic

Estimated Fleet Evolution by Aircraft Category

Total number of aircraft doubling between 2010 and 2050

SRTP: short range turboprops – SRTF: short range turbofans – MR: medium range LC: long range – VLA: very large aircraft

Geographical Demand

Source: Airbus GMF

80% of the international demand over the next 20 years will be within Asia-Pacific, North America and Europe

Today and Tomorrow...

What Do the Customers Want?

Gas Turbine powered flight ... 50 years of technology has dramatically improved SFC

... and dramatically reduced noise

imagination at work

Advanced Concept Design and Challenges for Future Commercial Aircraft Propulsion 11 October 2013

15

The History

Fuel consumption . . . Addressing every aspect - sfc

The Ohio State University

Efficiency Trends with Core and Propulsor Improvements

Propulsion system improvements require advances in both propulsor and core technologies

Fuel Consumption Projections

What is coming NOW...2015-2020

Narrow Bodies—

- Airplanes: A320 NEO, Boeing 737 MAX, COMAC 919
- Engines: Leaps, GTF's

Wide Bodies—

- Airplanes: A330 NEO, Boeing 787, Boeing 777x, A350, Genx
- Engines: RR 7000, RR 1000, GE9x

Regional Jets-

- Airplanes: Bombardier C Series, Mitsubishi MRJ, Embraer 190, Sukhoi Superjet
- Engines: Power Jet, GTFs

GENX[™] aircraft engine

Composite fan case

Material improves strength, is corrosionfree with lower weight than metal

Composite fan blades

Designed for fewer parts, greater efficiency, lower noise and most resiliency

Booster

Debris rejection system filters air to reduce downstream wear

Compressor

Advanced aerodynamics and high compression improve fuel burn with fewer parts

Combustor

Burns fuel at lower peak temperatures while delivering our lowest emissions

High pressure turbine Advanced alloys

withstand heat for

and coatings

lang life

Low pressure turbine

Fewer, more efficient parts and durable materials mean less waste and better performance

Balanced system design ... SFC benefit

Installed thrust

GEnx quiet with significant margin

Noise margin for Stage 3 and 4

imagination at work

GEnx cleanest for the environment

Twin annular pre-swirl (TAPS) technology

Rolls Royce Trent 7000 for A330 NEO

Trent 772 vs Trent 7000

- Fan Diameter 97.5in 112in
- Bypass Ratio 5:1 10:1
- Core Pressure 36:1 50:1
 Ratio

14% Lower Fuel Burn

Pratt & Whitney Geared TurboFan (GTF)

Low-Emissions Combustor

High-Speed Low Spool Compact LPC, LPT

Fundamental Aeronautics Program

PW Geared V.S. LEAPx Fuel Burn Evaluation

Direct-drive turbofan: 78" dia.

Architectures Within 1% Fuel Burn

Propulsion Systems that are arriving NOW 2015-2020

- Common Themes
 Higher Pressure Ratio Core—30
 Higher Bypass Ratio—10 to 12
- Some Differences
 - Direct Drives
 - ➤ Gear Boxes
- Benefits
 - ➤ 15% Reduction in Fuel Burn
 - ≻ More Green
 - ➤ More Quiet

GENY Technologies

Technology to Revolutionize the State of the Art

Engine Pressure Ratio Trend

Engine Temperature Trend

HP and LP Turbine Disks, Airfoils and Structures The Ohio State University

Turbine Airfoil Material Advancements Pushing the Envelope

Coming soon to an engine near you ...

advanced materials technologies

Structural Composite Case

R104

Advanced Superalloy Structural Alloy

Advanced Turbine Airfoil System

Mid-Fan Shaft– GE1014

TiAl LPT Blade

Ceramic Matrix Composites (CMC)

CMC Combustor Liner

2200°F Capability
50% Cooling Air Reduction
50% Weight Reduction
20% NOx Reduction

CMC Vane

CMC Blade

2200°F Capability 70% Weight Reduction Reduced Cooling Air Increased Efficiency

CMC's Reduce Weight and Improve Performance

What is NEXT?

Let us now look at the future: More Bypass Higher Pressure Ratio Cores New Architecture Drivers NASA N+3 Goals Clean Sky 2

NASA N+3 Subsonic Fixed Wing Goals

Corners of the Trade Space	N=1 (2015) Technology Benefits Relative to a Single Aisle Reference Configuration	N+2 (2020) Technology Benefits Relative to a Large Twin Aisle Reference Configuration	N+3 (2025) Technology Benefits
Noise (cum below Stage 4)	- 32 dB	- 42 dB	- 71 dB
LTO NOx Emissions (below CAEP 6)	- 60%	- 75%	Better than –75%
Performance Aircraft Fuel Burn	- 33%	- 50%	Better than -70%
Performance Field Length	- 33%	- 50%	Exploit metroplex concepts

Open Rotor Technology has potential for significant performance improvement, but with noise goal challenges

Leveraging the NASA/GE UDF Experience and UHB Partnership

Climb/Cruise in Glenn 8'x6' Wind Tunnel


```
Installation Effects
```


Counter-rotation Blade Profiles

- Extensive 1980s collaborative testing experience of counter-rotation, open rotor concepts by NASA and GE, resulting in substantial experimental database to guide new activity
- Improved Computational Aeroacoustics developed by NASA/GE/Universities to evaluate new open rotor concepts
- Improved design and system analysis tools to screen potential candidates and minimize scale model test configurations
- Utilize proven NASA test facilities, improved diagnostic testing techniques and existing scale model test articles
- Build on GE expertise in composite construction and advanced core technology to achieve full Open Rotor potential

Opportunities for the Future

 $Range = \left(\frac{V_0}{SFC}\right) * \left(\frac{L}{D}\right) * \ln\left(\frac{W_{initial}}{W_{final}}\right)$ $= (FHV * \eta_{thermal} * \eta_{transfer} * \eta_{propulsive}) * \left(\frac{L}{D}\right) * \ln\left(1 + \frac{W_{fuel}}{W_{payload} + W_{empty}}\right)$ Highly Loaded Very High BPR Novel Alloys / Low Loss Turbofans Inlets MMC's Compressors N+1 High OPR Low Variable Low Non-metallics Emissions Loss Exhausts Ultra High BPR Combustors Turbofans Advanced Engine N+2 Adaptive cycles Open Rotors Architectures Constant Volume Distributed Distributed Combustion Propulsion Power N+3 Transmission Hybrid Electric Wake Ingestion Propulsion

imagination at work

2030 – 2050 Propulsion System Vision

 Multiple gas generators (2-3)
 Multiple gear driven fans for each generator with boundary layer

ingestion capabilities

Distributed Propulsion Options

Boeing/NASA N2B

 Two gas generators
 Multiple electrically powered embedded fans with boundary layer ingestion capabilities

NASA N3-X Concept

 Liquid hydrogen cooled superconducting TeDP
 Embedded fans

ESAero/NASA Concept

- I wo or more gas generators
- Multiple distributed open rotor
- fans for each generator

High Efficiency High OPR Gas Generators

- Now driving to Bypass Ratios of 20+
- Highly loaded front block Compressor
- Minimizing the core size
- Hot section materials
- 1500°F HP Compressor

TECH 56 six stage Compressor

High Efficiency High OPR Gas Generators

- Ceramic Matrix Composites
- NextGen disk material -
- Tip/End Wall
 Aerodynamics
- Turbine Clearance
 Controls
- Low NOx Combustors
- Core Noise

Advanced fuel stage injector concepts

Boundary Layer Ingestion

Propulsion Airframe Integration

Airplane Aerodynamic Improvements

- Laminar flow nacelles
- Laminar flow on wings
- Low friction paint coating
- Improved aero-transonic design
- Wingtip technology
- Variable camber

passive/active advanced aerodynamics

Structure, Materials, and Manufacturing

- All composite aircraft
- Integrated structural health monitoring
- Advanced manufacturing technology

Relative Weights

Relative Benefits of Technologies Relative to N+3 Goals

Energy Transfer Options for Powering Remote Fans

		Cooled Generator & Converter Systems
	Shafting/Gearing Horsepower	Electrical Power to Motors
Benefits	 Lower FPR for a given packaging constraint High temperature gas contained to core stream 	 Lower FPR for a given packaging constraint Fan functionality after failure of one generator High temperature gas contained to core stream Offers most flexibility in fan placement and number of fans
Drawbacks	 Distance is restricted between gas generator and fans Limited to ~3 fans 	 Need for development of superconductivity technologies

Each Transfer Technology has Pros/Cons Depending on Specific Application

GE Aviation

Light, Efficient Components Must Be Cryogenic or Superconducting

Technology	Challenges	
Electric Motor	Power to Weight RatioDecrease AC Losses	
Advanced Combustor	Fuel MixingCombustion InstabilityLinear Material	
Boundary Layer Ingestion	Fan/Inlet LossesAcoustic and Aeromechanical IssuesOff Design Operation	
Composites	Material Composition/PropertiesDesign Architecture	
Distributed Propulsion	 Integration Complexity Maintenance Cost Minimal Loss Power Distribution 	
Acoustic Liners	Determine Location and ApplicabilityHigher Bandwidth Attenuation	
Computational Tools	Setup TimesValidationGreater MDAO	
Active Tip Clearance Control	Sensor CapabilitiesDynamic Modeling AccuracySystem Complexity	
Shape Memory Alloys	 Dimensional Stability Fatigue/Durability Higher Temperature Capabilities 	
Batteries	Energy DensityLifecycle	
Fuel Cells	 Power to Weight Ratio Fuel Leakage/Processing Deterioration/Lifecycle 	

Technology Assessment Matrix

Clean Sky 2

European Commission (EC) Budget of €3.6B (approx. \$5B) with 50% cost share from EC over 6 years (2015-2021)

VERY DYNAMIC PROGRAM

Clean Sky 2 Goals

	Clean Sky 2	
CO_2 and Fuel Burn	-20% to -30% (2025/2035)	
NO _x	-20% to -40% (2025/2035)	
Population exposed to noise/Noise footprint impact	Up to -75% (2035)	

Baseline for these figures is best available performance in 2014

Clean Sky 2

- R&D leading to Demonstrators
- 3 Integrated Aircraft Demonstrator Platforms (IADP's)
 - Large passenger
 - Regional
 - Fast Rotorcraft
- 3 Integrated Technology Demonstrators (ITD's) for Airframe, Engines and Systems
- Eco Designs and Small General Aviation/Commuter Aircraft

Sustainable and Green Engines

- Open Rotor
- Geared Open Rotor
- Large 3 Shaft Turbofan
- Geared Turbofan
- Turboshaft Engine Demonstrator
- Lean Burn Program

What does is all mean? Projections for Aircraft 2035+

	Single Aisle Aircraft Baseline A320-200	Twin Aisle Aircraft Baseline 777-200 ER	Regional Jets Baseline Embraer El90
FUEL BURN	45%	43%	45%
NOISE	Stage 4 with 70 dB margin	Stage 4 with 70 dB margin	Stage 4 with 70 dB margin
NOx	Cap 6 with 80% margin	Cap 6 with 80% margin	Cap 6 with 80% margin

TREMENDOUS OPPORTUNITIES IN ECONOMICS AND THE ENVIROMENT

Next Gen portfolio Military/ Commercial Technology Synergies

	AATE Advanced Affordable Turbine Engine)	FATE Future Affordable Turbine Engine)	ADVENT Adaptive Versatile Engine Technology	HEETE (Highly Efficient, Embedded Turbine Engine)
Customer	US Army	US Army	US Navy/ VS Navy/ US Air Force	US Air Force 😾
Program goals	25% better SFC 65% ✦hp/wt	35% better SFC 80% ✦hp/wt	20-200+% better SFC	35% better SFC
Technologies	3D aero, materials	3D aero, efficiency	Variable cycle, 3D aero, FLADE™	3D aero, efficiency
Segments	Attack/utility Helicopters	Heavy lift Helicopters	Combat aircraft	Tanker/Transport
	Blackhawk	NextGen heavy lift	6 th Generation	KC-135

Technology Demonstrator Programs

Strong History Leading to Commercial Benefits Today and Beyond

Looking Forward...The Challenges and Opportunities

The market is global and is growing

□This is good…big markets

More players want to play

They bring technology competition...which is good

□They bring financial competition...which is not necessarily good

Governments play a role

United States Air Force, Navy and Army Research Labs—still strong on the military side

□NASA going down significantly

European Union—strong and growing with the Clean Sky Program

Others

Looking Forward—Challenges and Opportunities (cont.)

There will be a stronger need for partnerships

Between Companies

- Between Industry and Universities
- Will have to work smarter

Rely on component tests as opposed to demonstrators

- Technology roadmaps will be essential to success in a very competitive world...competitive in terms of technology opportunities as well as funding streams
- The opportunity for our young engineers are immense as new innovative products will be needed and will flourish in this industry

The Ohio State University

Thank you for your time!

Dr. M.J. Benzakein Director, Propulsion and Power Center